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Abstract
Free noncommutative fields constitute a natural and interesting example
of constrained theories with higher derivatives. The quantization methods
involving constraints in the higher derivative formalism can be nicely applied
to these systems. We study real and complex free noncommutative scalar
fields where momenta have an infinite number of terms. We show that these
expressions can be summed in a closed way and lead to a set of Dirac brackets
which matches the usual corresponding brackets of the commutative case.

PACS numbers: 11.25−w, 02.20.−a, 02.40.Gh

1. Introduction

Recently, there has been a great deal of interest in noncommutative fields. This interest started
when it was noted that noncommutativespaces naturally arise in perturbative string theory with
a constant background magnetic field in the presence of D-branes. In this limit, the dynamics
of the D-brane can be described by a noncommutative gauge theory [1]. Besides their origin
in strings and branes, noncommutative field theories are a very interesting subject in their
own right (for a general review of noncommutative field theory, see [2]). They have been
extensively studied under several approaches [3, 4]. To obtain the noncommutative version
of a field theory one essentially replaces the usual product of fields by the Moyal product
[1, 2], which leads to an infinite number of spacetime derivatives over the fields. It can be
directly verified that the Moyal product does not alter quadratic terms in the action, provided
boundary terms are discarded. In this way, the noncommutativity does not affect the equations
of motion for free fields. However, we know that momenta can be obtained as surface terms
of a hypersurface orthogonal to the time direction [5]. This means that momenta are different
in the versions with and without Moyal products. In fact, momenta in the version with Moyal
products have an infinite number of terms.
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Hence, noncommutative field theories provide us with an interesting and nonacademic
example involving higher derivatives, where the quantization rules for such systems can be
nicely applied. We emphasize that this is a very peculiar situation. Usually, nontrivial
examples of systems with higher derivatives are just academic and plagued with ghosts and
nonunitarity problems. In fact, one can say that these systems have never constituted a
confident test for the nonconventional quantization procedure involving higher derivatives,
mainly in the cases where there are constraints. Free noncommutative theories, even though
they can be described without the Moyal product, are then an interesting theoretical laboratory
for using the higher derivative formalism with constraints. This is precisely the purpose of
our paper. We are going to study the quantization of the free noncommutative scalar theory
without discarding the infinite higher derivative terms of the Lagrangian. We shall see that,
regardless of the completely different expressions of the momenta, the canonical quantization
can be consistently developed in terms of a constraint formalism.

Our paper is organized as follows. In section 2 we deal with free noncommutative real
scalar fields and in section 3 we consider the complex case, where the momentum expressions
are still more evolved. Section 4 contains our conclusions.

2. Real scalar fields

Let us consider the action

S = 1

2

∫ t

t0

dt

∫
d3�x ∂µφ � ∂µφ (2.1)

where � is the notation for the Moyal product, whose definition for two general fields φ1 and
φ2 reads

φ1(x) � φ2(x) = exp
( i

2
θµν∂x

µ∂y
ν

)
φ1(x)φ2(y)|x=y (2.2)

and θµν is a constant antisymmetric matrix.
We notice that if one discards the surface terms, the derivatives of the Moyal product

will not contribute to the action (2.1). Concerning the equation of motion, this can be done
without further considerations. However, for the momenta we observe that any two situations
are completely different from each other. For systems with higher derivatives, velocities
are unconventionally assumed to be independent coordinates. (For a detailed discussion on
systems with higher derivatives, see [6] and for an application of this procedure, see [7].) In
the particular case of action (2.1), the independent coordinates are φ and φ̇. It is accepted that
there is a conjugate momentum for each of them. These can be obtained by fixing the variartion
of fields and velocities at just one of the extreme times, say δφ(�x, t0) = 0 = δφ̇(�x, t0), and
keeping the other extreme free [5]. The momenta conjugate to φ and φ̇ are the coefficients of
δφ and δφ̇, respectively, taken at time t over a hypersurface orthogonal to t.

Considering the variation of the action with just the extreme in t0 kept fixed, we have

δS = 1

2

∫ t

t0

dt

∫
d3�x(

∂µδφ � ∂µφ + ∂µφ � ∂µδφ
)

= 1

2

∫ t

t0

dt

∫
d3�x ∂µ(δφ � ∂µφ + ∂µφ � δφ) = 1

2

∫
d3�x(δφ � φ̇ + φ̇ � δφ) (2.3)

where the on-shell condition was used. The momenta shall be obtained from the development
of (2.3). Using the definition of the Moyal product, we have
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δS =
∫

d3�x
[
φ̇ δφ +

1

2

( i

2

)2
θµνθαβ∂µ∂αφ̇ ∂ν∂β δφ

+
1

4!

( i

2

)4
θµνθαβθργ θξη∂µ∂α∂ρ∂ξ φ̇ ∂ν∂β∂γ ∂η δφ + · · ·

]
. (2.4)

We observe that the odd terms in θµν were cancelled in the expression above. This was
because the symmetric terms that appear in the first step in (2.3) are actually necessary in
the noncommutative case. In addition, due to the integration over d3�x, only terms in θ0i will
survive in the Moyal product1. For the quadratic term in θµν , we obtain∫

d3�x θµνθαβ∂µ∂αφ̇ ∂ν∂βδφ =
∫

d3�x (∂̄2
...

φ δφ + 2 ∂̄2φ̈ δφ̇ + ∂̄2φ̇ δφ̈) (2.5)

where we have used the short notation ∂̄ = θ0i∂i . Similarly, for the next term in the expression
(2.4), we have∫

d3�x θµνθαβθργ θξη∂µ∂α∂ρ∂ξ φ̇ ∂ν∂β∂γ ∂ηδφ

=
∫

d3�x
(

∂̄4
(v)

φ δφ + 4 ∂̄4
(iv)

φ δφ̇ + 6 ∂̄4
...

φ δφ̈ + 4 ∂̄4φ̈ δ
...

φ +∂̄4φ̇ δ
(iv)

φ

)
(2.6)

where
(n)

φ means n-time derivative over φ. We observe that the general rule to obtain other
terms can be inferred. Introducing these results into the initial equation (2.4), grouping the
coefficients of δφ, δφ̇, δφ̈, etc and writing each term in a more convenient way, we have

δS =
∫

d3�x
{[(

0

0

)
φ̇ +

(
2

0

)
1

2!

( i

2
∂̄
)2 ...

φ +

(
4

0

)
1

4!

( i

2
∂̄
)4 (v)

φ + · · ·
]

δφ

+

[(
2

1

)
1

2!

( i

2
∂̄
)2

φ̈ +

(
4

1

)
1

4!

( i

2
∂̄
)4 (iv)

φ + · · ·
]

δφ̇

+

[(
2

2

)
1

2!

( i

2
∂̄
)2

φ̇ +

(
4

2

)
1

4!

( i

2
∂̄
)4 ...

φ + · · ·
]

δφ̈

+

[(
4

3

)
1

4!

( i

2
∂̄
)4

φ̈ +

(
6

3

)
1

6!

( i

2
∂̄
)6 (iv)

φ + · · ·
]

δ
...

φ + · · ·
}

(2.7)

where (
p

n

)
= p!

n!(p − n)!
(2.8)

We can rewrite this relation in a compact form as

δS =
∫

d3�x
∞∑

p,n=0




( i
2 ∂̄

)2p
(2p−2n+1)

φ

(2n)!(2p − 2n)!
δ

(2n)

φ +

( i
2 ∂̄

)2p+2 (2p−2n+2)

φ

(2n + 1)!(2p − 2n + 1)!
δ

(2n+1)

φ


 . (2.9)

One cannot still infer the momenta from the expression above because all δ
(n)

φ are not
independent. In fact, by virtue of the equations of motion we have, for example, δφ̈ = ∇2δφ,
δ

...

φ= ∇2δφ̇ and so on. Using these on-shell conditions [5] in expression (2.9) and rewriting

1 It was pointed out by Gomis and Mehen [4], that θ0i should be taken as zero in the vertex terms in order to avoid
causality and unitarity problems. However, the role played by these terms in the free case is not the same.
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it in terms of even and odd n, it is then finally possible to identify the independent canonical
momenta π and π (1), conjugate respectively to φ and φ̇,

π =
∞∑

p,n=0

( i
2 ∂̄

√
∇2

)2p+2n
φ̇

(2p)!(2n)!
(2.10)

π(1) =
∞∑

p,n=0

( i
2 ∂̄

√
∇2

)2p+2n+2
φ

(2p + 1)!(2n + 1)!
. (2.11)

An interesting point is that a careful analysis of the expressions above permits us to see that
they can be cast in a closed form. We just write down the final result

π = 1
2

[
1 + cosh

(
i∂̄

√
∇2

)]
φ̇ (2.12)

π(1) = 1
2

[
−1 + cosh

(
i∂̄

√
∇2

)]
φ. (2.13)

The commutators cannot be directly obtained from the fundamental Poisson brackets

{φ(�x, t), π(�y, t)} = δ(�x − �y) (2.14){
φ̇(�x, t), π(1)(�y, t)

}
= δ(�x − �y) (2.15)

because both relations (2.12) and (2.13) are constraints. The calculation of the Dirac brackets
can be done in a direct way (see appendix A). The most relevant bracket for obtaining the
propagator and the remaining quantization procedure is

{φ(�x, t), φ̇(�y, t)}D = δ(�x − �y) (2.16)

which means that the canonical quantization, even starting from the nontrivial momentum
expressions (2.10) and (2.11), or (2.12) and (2.13), leads to the same result of the corresponding
free commutative theory.

3. Complex scalar fields

We have seen in the previous analysis that there was a cancellation of odd terms in θµν in the
δS on-shell variation given by (2.3). This was due to the symmetry of the real scalar fields
in the action (2.1). In this section we are going to consider complex scalar fields where this
symmetry does not exist and consequently the cancellation no longer occurs.

The noncommutative action for complex fields reads

S =
∫

d4x ∂µφ∗ � ∂µφ. (3.1)

We could have also written here a symmetric quantity by adding a term with ∂µφ�∂µφ∗ into the
Lagrangian of the action (3.1). We are going to see that this is nonetheless necessary because
the action with ∂µφ � ∂µφ∗, even though having different momenta expressions, leads to the
same quantum result as that given by (3.1). What is important to notice is that the Lagrangian
of the action (3.1) does not have any problem related to Hermiticity, i.e., (∂µφ∗ � ∂µφ)∗ =
∂µφ∗ � ∂µφ, and discarding boundary terms, the action (3.1) leads to the usual free case
S = ∫

d4x ∂µφ∗∂µφ.
Following the same steps as those in section 2, we get

δS =
∫

d3�x(δφ∗ � φ̇ + φ̇
∗

� δφ) (3.2)
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where a similar development permits us to obtain the momenta

π =
∞∑

p,n=0

1

p!(2n)!

(
− i

2
∂̄
√

∇2
)p+2n

φ̇
∗ (3.3)

π(1) =
∞∑

p,n=0

1

p!(2n + 1)!

(
− i

2
∂̄
√

∇2
)p+2n+1

φ∗ (3.4)

π∗ =
∞∑

p,n=0

1

p!(2n)!

( i

2
∂̄
√

∇2
)p+2n

φ (3.5)

π(1)∗ =
∞∑

p,n=0

1

p!(2n + 1)!

( i

2
∂̄
)p+2n+1

φ (3.6)

respectively, conjugate to φ, φ̇, φ∗ and φ̇
∗. Also here, these sums lead to closed expressions

π = 1
2

[
1 + cosh

(
i∂̄

√
∇2

)]
φ̇

∗ − 1
2 sinh

(
i∂̄

√
∇2

)√
∇2 φ∗ (3.7)

π(1) = 1
2

[
−1 + cosh

(
i∂̄

√
∇2

)]
φ∗ − 1

2 sinh
(

i∂̄
√

∇2
) 1√

∇2
φ̇

∗ (3.8)

π∗ = 1
2

[
1 + cosh

(
i∂̄

√
∇2

)]
φ̇ + 1

2 sinh
(

i∂̄
√

∇2
)√

∇2 φ (3.9)

π(1) = 1
2

[
−1 + cosh

(
i∂̄

√
∇2

)]
φ + 1

2 sinh
(

i∂̄
√

∇2
) 1√

∇2
φ̇ (3.10)

where the sinh-operators come from the odd terms in θµν . All the relations above are
constraints. The calculation of the Dirac brackets is a kind of direct algebraic work (see
appendix B). The important point is that the brackets

{φ(�x, t), φ̇
∗
(�y, t)}D = δ(�x − �y)

(3.11){φ∗(�x, t), φ̇(�y, t)}D = δ(�x − �y)

are obtained, which means that the canonical quantization is correctly achieved.
To conclude this section, let us mention that we could have started from

S̃ =
∫

d4x ∂µφ � ∂µφ∗ (3.12)

instead of the action (3.1). Considering the on-shell variation of S̃ and keeping one of the
extreme times fixed, we have

δS̃ =
∫

d3�x(δφ � φ̇
∗ + φ̇ � δφ∗) (3.13)

which leads to expressions for the momenta similar to (3.7)–(3.10) with a change in the sign
of the sinh-terms. Even though the expressions for the momenta are not equivalent in the two
cases, we can trivially show that the constrained canonical procedure leads to the same Dirac
brackets given by (3.11).

4. Conclusions

We have studied the free noncommutative scalar theory by using the constrained canonical
formalism in the appropriate form for dealing with higher order derivative theories. This means
that we have considered the momenta as defined as the coefficients of δφ and δφ̇ calculated on
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the hypersurface orthogonal to the time direction. We have shown that the evolved expressions
coming from the momenta definitions can be summed in a closed way making it possible to
be harmoniously applied in the Dirac constrained formalism. We have also considered the
complex scalar fields, where the momentum expressions are still more evolved.

These examples naturally obtained from noncommutative theories make it possible to
verify the consistency of the constrained canonical quantization procedure involving higher
derivatives which is in some sense a controversial subject in the literature.
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Appendix A. Dirac brackets for the real scalar case

Let us denote constraints (2.12) and (2.13) in a simplified notation,

T 0 = π + K φ̇ (A.1)

T 1 = π(1) + Lφ (A.2)

where K and L are the operators

K = − 1
2

[
1 + cosh

(
i∂̄

√
∇2

)]
(A.3)

L = 1
2

[
1 − cosh

(
i∂̄

√
∇2

)]
(A.4)

Using the fundamental Poisson brackets given by (2.14) and (2.15), we have

{T 0(�x, t), T 1(�y, t)} = −Lyδ(�x − �y) + Kx δ(�x − �y)

= −δ(�x − �y)

= −{T 1(�x, t), T 0(�y, t)} (A.5)

where in the last step there was a providential cancellation of the even operators cosh
(

i∂̄
√

∇2
)

acting on δ(�x − �y). Since the remaining Poisson brackets of the constraints are zero, we have
that the corresponding Poisson brackets matrix is given by

M =
(

0 −1
1 0

)
δ(�x − �y) (A.6)

whose inverse is directly obtained, as is also the Dirac brackets (2.16).

Appendix B. Dirac brackets for the complex case

Let us denote the corresponding constraints by

T 0 = π + K1 φ̇
∗ + K2 φ∗

T 1 = π(1) + L1 φ̇
∗ + L2 φ∗

(B.1)
T 2 = π∗ + K1 φ̇ − K2 φ

T 0 = π(1)∗ − L1 φ̇ + L2 φ
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where K1,K2, L1 and L2 are short notations for the operators

K1 = − 1
2

[
1 + cosh

(
i∂̄

√
∇2

)]

K2 = 1
2 sinh

(
i∂̄

√
∇2

) √
∇2

(B.2)
L1 = 1

2 sinh
(

i∂̄
√

∇2
) 1√

∇2

L2 = 1
2

[
1 − cosh

(
i∂̄

√
∇2

)]
.

The Poisson brackets for these constraints are

{T 0(�x, t), T 2(�y, t)} = (K2y + K2x) δ(�x − �y) = 0

{T 0(�x, t), T 3(�y, t)} = (−L2y + K1x) δ(�x − �y) = −δ(�x − �y)
(B.3){T 1(�x, t), T 2(�y, t)} = (K1y + L2x) δ(�x − �y) = δ(�x − �y)

{T 1(�x, t), T 3(�y, t)} = (L1y + L1x) δ(�x − �y) = 0.

The remaining brackets are trivially zero. It is interesting to observe the harmonious
cancellation among the different operators acting on the delta function. Now, we can easily
construct the matrix of the Poisson brackets of the constraints and calculate the relevant Dirac
brackets given by (3.11).
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